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For Internet of Things (I0T) devices and cyber-physical systems (CPS), it is required to connect them securely
and reliably to some form of cloud environment or computing entity for control, management and utilisation.
The Internet is a suitable, standardized, and proven means for the connection of IoT devices in various sce-
narios. Connection over the Internet utilises existing protocols, standards, technologies and avoids investment
in new, specialised concepts. Thereby, this connection requires a transparent addressing schema which is
commonly TCP/IP, using domain names and IP addresses. However, in industrial, commercial and private
networks, the addressability and connectability/connectivity is often limited by firewalls, proxies and router
configurations utilising NAT. Thus, the present network configurations hinder the establishment of connec-
tions between IoT devices across different locations. Therefore, the method for connecting IoT devices in a
client-server configuration proposed herein utilises the Tor (previously: The onion router/routing) network for
addressing of and secured communication to IoT and CPS devices. It is an overlay protocol that was designed
to allow for robust and anonymous communication. The benefit of this approach is to enable addressability
and connectivity of IoT devices in firewalled and potentially unknown and changing network environments,
thus allowing for IoT devices to be used reliably behind firewalls as long as outgoing communication is not
blocked.

tems (CPS) and enhanced with so called smart ser-
vices, i.e., services operating on data generated by

In scenarios where IoT (Internet of Things) sys-
tems are to be deployed, it is essential to address
these devices reliably even if they are located behind
corporate or other firewalls. The reliable addressing
across various network scenarios for IoT devices is
the key problem to solve. Furthermore, connectiv-
ity to and of such devices can be problematic due to
restrictive network settings. This work is motivated
by the SePiA.Pro project (Deutsches Forschungszen-
trum fiir Kiinstliche Intelligenz et al., ; Pfeil et al.,
2016; Falkenthal et al., 2017), which provides such
a scenario. In this project, industrial machinery is
equipped with sensors to form cyber-physical sys-

these CPS in a cloud-like manner (Falkenthal et al.,
2016a). A special component in these smart services
is a so called DataHub, which facilitates unified and
secure access to and usage of various data sources and
targets within smart service and industrial environ-
ments. These DataHubs have to be addressable and
stackable within networks and over network bound-
aries for cross and inter-company access. Address-
ing and communication with these CPS devices is fa-
cilitated with the proposed mechanism, relying on a
client-server architecture, operating on the 7or net-
work (McCoy et al., 2008; Jansen et al., 2012). The
solution provided here solves the issue of addressing



and connecting CPS/IoT devices via a client-server
system relying on the Tor network, it is motivated
by a scenario of the SePiA.Pro project and described
through its implementation in code. For an introduc-
tion to the nature and structure of the 7or network,
section 3 is provided. The proposed mechanism is
implemented utilising a BASH (Free Software Foun-
dation, Inc., ) script for the client part, intended to be
executed on a micro computing platform, in this case
a Raspberry Pi 2 (Raspberry Pi Foundation, ). The
server part is implemented as a RESTful (Represen-
tational state transfer) API (Application programming
interface) using the LoopBack library.

The remainder of this paper is structured as fol-
lows: This implementation is described in section 4,
with the architecture discussed in Sec. 4.1 and the im-
plementation details in Sec. 4.2. The implementation
in and relationship with the SePiA.Pro project, in par-
ticular its

DataHub component is presented in Sec. 5. The
DataHub component of the SePiA.Pro project is de-
scribed in Baumann et al. (Baumann et al., 2017) and
Falkenthal et al. (Falkenthal et al., 2017). This com-
ponent controls, limits, manages, and facilitates the
access and usage of data sources and targets in Indus-
try 4.0 scenarios. This work concludes with a sum-
mary in Sec. 6.

2 Related Work

Guth et al. (Guth et al., 2016) investigated sev-
eral state-of-the-art IoT platforms and deduced a gen-
eral and technology-agnostic 10T reference architec-
ture. The presented approach in their work can be
used to implement the abstractly described connec-
tions of their reference architecture between devices,
gateways, [oT integration middlewares, and applica-
tions. While their analysis considers many present
state-of-the-art protocols for connecting IoT devices
to middleware systems and applications, the approach
to overcome the ever-present difficulty of addressing
and connecting IoT devices as presented in this work
extends their list of investigated protocols.

Reinfurt et al. (Reinfurt et al., 2016; Reinfurt
et al., 2017) capture the conceptual essence of dif-
ferent fields of IoT research into patterns. Thereby,
they provide proven nuggets of advice about the de-
sign and characteristics of IoT systems. Our approach
provides concrete solution implementations (Falken-
thal et al., 2014) concerning different abstract solu-
tion principles which are described, e. g., by the pat-
terns Device Gateway, Remote Device Management
and their various different patterns for IoT devices.

Previous work by Baumann et al. (Baumann
et al., 2016¢c; Baumann et al., 2016a; Baumann
et al.,, 2016b) provides architectural compositions
and implementations of distributed control systems
for the use case of 3D printing in remote environ-
ments. These systems are based on unified control of
3D printing devices and associated adaptors via Inter-
net based protocols. Prior works focus primarily on
the server and communication components of these
systems.

3 Fundamentals of the Tor Network

The Tor network was developed around the mid
1990s and released in 2002, as an overlay protocol
to allow safe, encrypted, and anonymous usage of
the Internet and its services, such as web browsing,
email, chat and file-sharing (Chaabane et al., 2010).
Originally the name was used as an acronym, the
onion router or routing, indicating the underlying de-
sign principle: onion routing (Haraty and Zantout,
2014). This routing principle is based on the nest-
ing of data packages within each other that are par-
tially unpacked by stations along the communication
path to recover the encrypted package destined for
the next hop or destination. The stations along the
way are called Tor relays, more specifically middle
relays, bridges (private relays not generally known to
the public) and exit or end relays. Based on these
nodes the Internet traffic is routed over several relays
to its final destination in a way that the party on the
other end of the connection can’t trace the traffic back
to the source. This principle ensures the anonymity of
participants in the Tor network, which has reportedly
been employed by journalists, law enforcement agen-
cies but also for drug trafficking, the distribution of
illegal content over the Internet and other illicit dig-
ital actions. Today the Tor network consists of sev-
eral thousand relays (2017-07-20: 6914 relays with
12.3 % bandwidth'), several hundreds of which
are exit nodes (2017-07-20: 794 exit nodes), the re-
lays connect a given request to its final destination in
the Internet. The number of daily users was around 4
million (Dredge, 2013) in 2013. Tor uses a data struc-
ture that can potentially be identified and filtered by
firewalls, but also provides means to obfuscate its traf-
fic to avoid detection and disruption (The Tor Project,
).

Furthermore, Tor allows the consumption of so
called Hidden Services, which are only exposed and

ITor Network Status http://torstatus.blutmagie.
de



reachable within the Tor network and only by the
users who connect their systems to the 7or network
using a client software. These services are identi-
fied by a .onion address, a 16 alpha-semi-numeric
character of 80 bit length. This domain was declared
a special use domain in 2015 by the IETF (Willis,
2015).

The main drawback of the Tor network is perfor-
mance. The principle of onion routing with all its
relaying steps and the cryptographic operations in-
volved slow down the experienced network speed.
On the other hand, although Tor network ensures
anonymity for Internet connections to a high degree,
it is not a perfect system (Dingledine, 2011). There
have been several successful attacks (mostly from law
enforcement agencies while investigating for crimi-
nal activities) on the Tor browser, the most vulner-
able part on the 7or system. The mere usage of an
anonymity software can make participants move into
the focus of law enforcement agencies.

So what value does Tor bring to our work? Tor
provides the technological basis for static address-
ing within an overlay and some sense of firewall ag-
nostic communication layer. Furthermore, it facili-
tates an additional layer of security, i.e., encryption,
between the communicating parties, i.e., the server
and the client. A requirement for the applicability
of this method is that the client system, the CPS or
IoT device, must be able to establish outgoing con-
nections through the firewall to the Internet. The sys-
tem is designed to be mostly uni-directional, polling
or requesting data from the server, thus, the commu-
nication is coming from the client behind the fire-
wall, mimicking ordinary user behaviour such as web
surfing, which is likely to be allowed by the net-
work configuration. The Tor network is actively re-
searched (Ren and Wu, 2010) and developed, thus,
making it more likely that drawbacks and flaws in the
system getting fixed within reasonable time.

4 Tor-based Addressing and
Communication for IoT Devices

The system is composed of two parts, with the
client component deployed to and operated on a
micro-computing system, such as a Raspberry Pi 2,
and the server component operating on another sys-
tem, e. g., in the cloud. The server component is im-
plemented as a RESTful API using LoopBack (Stron-
gloop, ) for NodeJS (Node.js Foundation, ). The
server exposes and offers its functionality over HTTP
(Hypertext transfer protocol) and is described in detail
in the publications referred as (Baumann et al., 2016¢;
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Figure 1: Working Principle of the Tor Network; Figure
source: https://commons.wikimedia.org/wiki/File:
Tor-onion-network.png; author: Electronic Frontier
Foundation (EFF); licence: CC BY 3.0 US

Baumann et al., 2016a; Baumann et al., 2016b). Only
the necessary basic concepts of the server component
are described herein. The conceptual and architec-
tural composition of the system is described in the
following section (4.1). A third component, the De-
ploySupport is implemented to facilitate the deploy-
ment and installation of the system and described in
Sec. 4.2. The system has security as a key design
principle with the utilisation of separated execution
environments on the micro computing system, crypto-
graphic signing and securing of data during transport
and using secured data channels. The server compo-
nent creates a Jor hidden service to which it binds
its RESTful HTTP API for connection. A Tor hid-
den service, is a service within the 7Tor network, that
provides a certain functionality within the network by
a local service, ordinarily offered over the Internet,
such as a HTTP server, a website or a chat service.

The micro computing platform on which this sys-
tem (the client) is deployed, is a Raspberry Pi 2. In
this figure, the system is connected to an Ethernet ca-
ble (red cable) and with USB (black cable) to an exter-
nal device, a 3D printer. Furthermore, the platform is
connected with a USB serial connection to a host sys-
tem for debugging purposes. In operation, this USB
serial connection cable is removed.

To further allow control of the platform, besides
the client-server model described in the following, a
SSH server is utilised on the client. On the first startup
of the system, passwords for the user and administra-
tor are generated randomly. These passwords are sup-
plied to the server in encrypted form, along with other
installation information.



4.1 System Architecture

Fig. 2 depicts an overview of the implemented sys-
tem. In this figure, the CPS consists of the 3D printer,
associated sensors, the micro computing system, i. e.,
the Raspberry Pi 2, and their digital representation
and controlling capability. The system depicted here
is communicating over the 7or network over the In-
ternet. In the figure, the red text ;ENC; is supposed
to indicate an encrypted and secured channel through
the Internet. The central server component is de-
ployed to a system reachable over the Internet, e. g.,
a cloud-based hosting system. The Tor network pro-
vides addressability based on cryptographic hashes,
as indicated by the text Tor Address in the figure.
These hashes are unique and identify components.
The client is periodically polling the server for in-
formation and instructions to be executed on the mi-
cro computing system. All communication is initi-
ated by the client and targeted outwards of the net-
work. The server provides work instructions as work
instruction packages in a queue, which is synchro-
nised with an information storage component to en-
sure the consistency of instructions. Conceptually,
the work instruction packages are self-contained com-
pressed packages, that are cryptographically signed
and encrypted. In these packages, the required in-
structions, software, and data can be included, thus,
enabling function shipping.

Fig. 3 depicts the composition and distribution of
the components of the system. The DeploySupport
component consists of BASH scripts, that facilitate in-
stallation and configuration of the client system on the
micro computing system. These components are de-
scribed in the following at a high level. The installer
acquires an image of the latest ArchLinux OS distribu-
tion and prepare a storage medium for use in the mi-
cro computing system with it. In our case, this stor-
age medium is an SD-card. Alternative deployment
strategies and mechanisms, such as Tosca4loT (Ebner
et al., 2017), can be used to deploy the system onto
the micro computing system. For further iterations of
this software, the extension and usage of alternative,
automated and controlled, deployment strategies and
mechanisms is intended.

4.2 Prototypical Implementation

Conceptually the client is created from one central,
continually running loop, which checks for internal
state, such as connectivity and utilisation, and per-
forms subsequent actions.

The initial action of the client, prior to entering
the control loop, hardens its execution environment to

make it more robust against attacks.

The following action of the client checks for the
required binaries and scripts in the respective paths
of the operating system. In case the required binaries
and scripts are unavailable, the execution of the client
is terminated. If all required software is present, then
the configuration information is processed. Configu-
ration information is stored locally to enable consis-
tent utilisation over reboots and system interruptions.
The configuration consists of information such as a
unique identifier, the remote endpoints and encryption
components. The main loop of the client repeatedly
checks the following information in the specific order:

e Status of the client daemon itself; checking if the
client software is still running on the system and
if the watchdog is present. The client watchdog
is a component to prevent the client from hanging
and restarts the system in case of aborts or errors.

e Connectivity; checking the connectivity of the
system in general, i. e., checking if a network con-
nection is established, if name resolution can be
performed, if certain hosts on the Internet are
reachable and if the central server can be con-
nected with.

e Remaining disk space and space utilisation;
Checking if sufficient disk space for the down-
loading of work instruction packages is available.
In case the disk space is low and insufficient, fur-
ther execution, i.e., fetching of instructions, is
paused and this status is communicated with the
central server.

In case the periodic checks are completed suffi-
ciently, the client polls the central server for work.
This polling for work queries a specific RESTful end-
point and the result of this poll is either the infor-
mation that currently no work is expected to be per-
formed or information on the number of work pack-
ages and logical location of the work packages. If the
client has work to perform, the information on the ex-
isting work packages is used to query for the work
packages on another specific RESTful endpoint. The
work package is then transferred over an encrypted
HTTP transport over Tor and stored locally. The work
package is decrypted, deflated and checked for in-
tegrity and correctness. In case the correctness and
integrity checks are sufficient, the work package is
deployed into a jailed environment, for additional se-
curity, and executed. During the execution, the output
of the work package is acquired and, alongside, the
resulting information of the work package, stored for
historical and analytical purposes. This information
is submitted to the server with additional information.
The client execution environment then cleans the tem-
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porary and execution folders to avoid space issues and
data leakages.

Independent of this main loop there is a secondary
loop executed periodically. This secondary loop ac-
quires status information on the host operating system
and the micro computing system in general and sub-
mits this information to the central server which can
be considered health data. This data includes infor-
mation on the system’s uptime, its CPU and memory
utilisation, the status of network adapters and mem-

ory devices. It is executed completely independent of
the main loop.

As depicted in Fig. 3, the Execution Engine is
part of the client package and executes the acquired
work packages locally. For the execution of the work
packages, a specific Linux jail environment using ch-
root is created and the execution is performed therein.
These separate and distinct environments are utilised
to avoid corruption of the system by malicious or mal-
formed work package content. The initial creation of
a prototypical jail environment is performed by the
Installer and the Configurator as part of the Deploy-
Support component as depicted in Fig. 3. The Log
and Storage components on the server and the client
are implemented as file and directory based storage
systems, to hold the historical execution output from
the work packages and the operation of the client and
server itself. The implementation of the client is a
BASH script and consists of approximately 1900 lines
of code. The code is available on GitHub and licensed
as CC-BY. See https://github.com/baumanfx/
RaspberryPi_Client for more details on the client
software. In the following pseudo code, the structure
of the client execution is depicted:

harden () ;
statusHealthLoop &

checkBinaries();

if ( binaryMissing )

readConfig();

if ( noConfigFound )
}

{ abort (); }

{ createNewConfig();



while ( true ) {
checkClient ();
if ( clientProblem || watchdogFailed )
{

solveProblem();

}

checkConnectivity();

if ( noConnectivity ) {
continue;

}

checkDiskSpace();

queryServerForWorkpackage () ;

if ( workpackageAvailable &&
diskSpaceAvailable ) {

downloadWorkpackage () ;
unzipWorkpackage () ;
checkIntegrityOfWorkpackage () ;
deployWorkpackageToJdail () ;
executeWorkpackage () ;
aquireLogAndStatus();

submitWorkpackageInformationToServer ();

cleanUp();

The server component is adapted from an-
other project, a cloud-based 3D printer control sys-
tem (Baumann et al., 2016c; Baumann et al., 2016a;
Baumann et al., 2016b), which was designed to dis-
tribute work packages to micro computing platforms
that directly controlled attached 3D printers. The
adaption for the SePiA.Pro project is that the work
packages now contain execution instructions for the
acquisition of sensor data from CPS and control and
management instructions for the control of industrial
machinery over standardized protocols, e. g., OPC UA
(Open Platform Communications Unified Architec-
ture (Leitner and Mahnke, 2006; TC 65/SC 65E,
2015)).

Furthermore, the components for the installation
and configuration of the system are available on the
same repository. The components for the central
server component are published separately and have
been described in previous publications.

Further supplementary material include service
definition scripts for the systemd system on ArchLinux
0S, exemplary udev rule files for the unified access of
a 3D printer and webcams to the system.

S Integration to DataHub

The problem to be solved with this work is mo-
tivated by the research project SePiA.Pro (Deutsches
Forschungszentrum fiir Kiinstliche Intelligenz et al., )
which aims to integrate industrial machinery to smart

services. In this project, the addressability and con-
nectivity of the machines or their CPS representation
is a problem that is solvable via the proposed client-
server system. The project aims to solve challenges
in Industry 4.0. CPS in Industry 4.0 settings de-
mand a seamless integration of a potentially huge set
of data sources, potentially across geographic (such
as production plants) or even organisational bound-
aries (for example when optimizing a whole sup-
ply chain) for large scale data-analysis to support
concepts such as predictive maintenance. A data
integration solution, explicitly addressing such sce-
narios is currently developed within the SePiA.Pro
research project (Deutsches Forschungszentrum fiir
Kiinstliche Intelligenz et al., ).

The DataHub in this project is a component that
builds upon a modular architecture for integrating var-
ious data sources into one overarching hierarchical
meta model. Each data source (e. g., sensor or even
enterprise database) thus “exposes” only a projection
of the overall meta model. By employing such a
meta-model integration approach, we can define and
enforce aggregation, access control, and data redun-
dancy together with master/slave definition and syn-
chronisation topics in a central manner, simply at the
DataHub node. Designing the DataHub nodes self-
referencable and equipping them with automated pol-
icy enforcement functionality (Baumann et al., 2017)
allows us to create hierarchical systems of data inte-
gration nodes, covering intra as well as secure inter
company data analytics.

System architectures as depicted in this paper in-
tegrate perfectly into such a system of integrated data
analytics. Sensors and other CPS devices can be ad-
dressed in a stable manner, which becomes even more
of a necessity and at the same time a technical prob-
lem in cross-company scenarios. Also the stable con-
nectivity across company boundaries and thus fire-
walls or NAT (network address translation) configu-
rations is also essential for the depicted setting.

The DataHub and its integration in the SePiA.Pro
project and the connection to this proposed system is
depicted in Fig. 4. In this figure, the different con-
nection mechanisms from industrial machinery to the
DataHub component are depicted by three different
exemplary machines of which two are connected us-
ing the proposed client-server model over the Tor net-
work. The figure depicts components (Trust Center,
Smart DataHub, IoT/CPS, Models, Data, Machines)
and information flows (Meta Data, Operating Data,
etc.) between the components. The Trust Center
component in this figure is an authoritative instance
that controls, defines, and manages access and us-
age rights on all further components and acquires the
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relevant models and data from stakeholders. The bi-
directional access to the industrial machines is indi-
cated by the dual-arrows. Data that is acquired and
processed includes machine and environmental meta
data, operating data, and the associated instructions
for the machines and sensors.

6 Conclusion & Future Work

In this publication, a method to address CPS or
IoT devices based on the Tor network was proposed
and described. The description was performed in
a high-level manner based on the architecture and
through an example. The code for this client-server
system is published on a public repository and avail-
able for study and application. The addressing of
the client and communication with the server, as
described, relies on the systems capability to make
outbound connections through a firewall. The sys-
tem presented here enables the usage of remote sys-
tems behind firewalls and in potentially unknown net-
working environments. The system is motivated by
the SePiA.Pro project and its central component, the
DataHub.

In future work we plan to automate the provision-
ing and management of whole IoT integration sce-
narios including IoT devices and middleware, such as
presented in this work, but also data processing com-
ponents, such as analytics platforms as demonstrated
by Falkenthal et al. (Falkenthal et al., 2016b).
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